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Abstract 
 

Methods of time interval measurement can be divided into asynchronous and synchronous approaches. It is well 
known that in asynchronous methods of time-interval measurement, uncertainty can be reduced by using 
statistical averaging. The motivation of this paper is an investigation of averaging in time interval measurements, 
especially in a synchronous measurement. In this article, authors are considering the method of averaging to 
reduce the influence of quantization error on measurement uncertainty in synchronous time-interval 
measurement systems, when dispersion of results, caused by noise is present. A mathematical model of 
averaging, which is followed by the results of numerical simulations of averaging of measurement series is 
presented. The analysis of results leads to the conclusion that in particular conditions the influence of the
quantization error on measurement uncertainty can be minimized by statistical averaging, similar to 
asynchronous measurements. 
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1. Introduction 

 
The resolution of modern time-to-digital converters is still increasing and often is better 

than 50 ps. In such measurement systems the quantization error is often negligible. Despite 
this fact, in a wide range of applications the use of advanced time-to-digital converters is 
economically unjustifiable and the quantization error is still an important source of 
measurement uncertainty. The quantization error can be decreased by averaging a series of 
asynchronous time interval measurements. Similar methods in A/D conversion are widely 
used and reported [1-5], though one can hardly find such analysis in the time domain. In the 
paper the authors present an analysis of statistical averaging in synchronous time 
measurement systems, that, in the presence of noise, can also lead to reducing the contribution 
of quantization error to the measurement uncertainty. 

 
2. Time interval measurement methods 

 
A time-to-digital converter (TDC) is a device that converts a time-interval T, determined 

by two physical events, which specify the beginning and end of the T, to its digital 
representation [T] . The most common method of time-interval measurement is using a digital 
counter to count periods of a clock signal during the T. The largest advantage of this method 
is its simple implementation and an easily-achieved long measurement range, which can be 
additionally doubled by adding another flip-flop to the counter circuit. The resolution of this 
method is equal to the clock period T0. Achieving a resolution better than 1 nanosecond is 
problematic, since a clock signal over 1 GHz is required. Thus, in TDCs, the  counter method 
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is used only to obtain a “coarse” quantization of the measured time interval, and is combined 
with another ”fine” method whose purpose is high-resolution measurement of short time 
intervals. That method is implemented in an interpolator subcircuit and often bases on 
subdivision of the clock interval, for example, by using tapped delay lines. A detailed 
description of time interval measurement methods and converters can be found in [6, 7]. In 
spite of the chosen method, the resolution of a converter is one of the most significant sources 
of the measurement uncertainty, especially in applications in which the use of ultra-high 
resolution TDCs is economically unjustifiable. 

General purpose TDCs are designed to measure the time interval between two events 
which are independent from each other and from the clock. As the beginning of the measured 
time interval is asynchronous to the active edge of the clock signal (which is the boundary 
between two interpolation intervals), the measurement is called asynchronous. The most 
popular methods of interpolating an asynchronous time measurement are the Nutt method 
with a counter and two interpolator circuits, and the free-running counter method, based on a 
free-running counter combined with a single interpolator, which are sampled without stopping 
them [6]. 

Another approach is the synchronous time measurement, which is characterized by the 
synchronization of the beginning of the measured time-interval T with the clock signal. It can 
be realized by starting the reference clock by a physical event (where it can be implemented, 
for example, in systems with triggered oscillators), or by synchronizing the beginning of the T 
to the clock signal (in measurement systems in which the start of T is determined by the 
system itself). 

 
3. Quantization error of a time-to-digital converter 

 
One of the primary sources of error in time-to-digital conversions is a quantization process 

that occurs when the length of the time interval T is represented by a discrete value. A 
quantization transfer function is presented in Fig. 1. The quantization error of time-to-digital 
conversion is described by: 

 

 [ ] ,TTeq −=  (1) 
 

where: T is a real value of the measured time interval, and [T]  is the measurement result 
(quantized value). 

 

 
 

Fig. 1. A quantizer (quantization transfer function). 
 

 
 

Fig. 2. A quantization error in function of the 
length of the measured time-interval T. 

 
The quantization error cannot be evaluated in a measurement, because T  is unknown. 

Generally, eq takes values between q/2 and -q/2, where q is the quantization step of the time-
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to-digital converter (Fig. 2). All of these values are equally likely to occur, therefore the 
influence of the quantization error on the measurement uncertainty is modelled by an uniform 
distribution. An uncertainty 

STσ  
of a single measurement can be estimated as the standard 

deviation of the uniform distribution of width q   and is given by: 
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If the measured time interval T  is asynchronous to the clock, the beginning and the end of 
it are both described by uncertainty

 qσ , thus in this situation the resultant uncertainty of the 
measurement 

ATσ  
is larger than in the above-mentioned situation: 
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It is a well known fact that the quantization error can be reduced by averaging techniques  
[6, 8], provided that the measured time interval is asynchronous to the clock signal, as in  
Fig. 3. For the analysis of such measurement, T can be divided into two parts: Ta - between 
the start of the T and the beginning of the next quantization interval qi, and Ts - between the qi 
and the end of the T. According to it, the time interval Ta takes random value between 0 and q, 
so the length of Ts has an uniform distribution in the range ( )TqT ,− . In that case, the value 
obtained from the quantization can be  [T] 1 or [T] 2, which corresponds to the j-th and j-th+1 
quantization intervals. In a series of measurements of size N these two results are obtained 
with the numbers N1 and N2 respectively. By averaging the measurement results one can 
obtain the true value of the length of T. To obtain the proper value of T one must add the q/2  
- mean value of the offset Ta which is being omitted by hardware while measuring: 
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The measurement uncertainty Tσ  is given as follows:  
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Fig. 3. Asynchronous measurement of time-interval T. 
 

4. Mathematical model of quantization error in the presence of noise 
 
In a situation when the start of T is synchronous with the clock, Ta = 0 and all 

measurement results have the same value, thus averaging does not lead to a reduction of the 
uncertainty caused by the quantization error. However, an analysis of the above-mentioned 
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asynchronous measurement may lead to the conclusion that the averaging method could be 
successfully used when a length of the measured time interval is disturbed by noise, even 
when the beginning of T is synchronous with the clock signal. In the case when the measured 
time-interval is disturbed by noise δ, its length Tn can be modelled by:  

 

  ,δ+=TTn  (6) 
 

where the distribution of δ is given by ψ(t). One can notice that Tn equals Ts, as can be seen 
in Fig. 4. 

 

 
 

Fig. 4. Synchronous measurement of a time-interval disturbed by noise δ , given by rectangular distribution 
R(0,q). 

 
Conversion of the time interval Tn  to the digital value [Tn] is modelled by the quantization 

process, analogical to one presented in Fig. 1. The result of a measurement series is then 
averaged. P 

The probability pi that the length of Tn is in the i-th quantization interval (between  qi and 
qi+1) is equal to: 
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The expected value of the quantized measurement series is:  
 

 ∑ ∑ ∫
= =

⋅−===
−

N

i
i

N

i

q

q

iinn QdtTtQpTTE
i

i
1 1

.)(][])([
1

ψ  (8) 

 

An analogical equation describes the expected value of 2T : 
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On the basis of these relationships (7, 8), one can derive the expected value of the 
quantization error eq, described by the following equation:  
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and the standard deviation σT  of the series of measurements:  
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The presented model can be used to research the influence of noise, determined by ψ(t), on 
the average value in a synchronous time measurement. Although for particular distributions 
ψ(t) equations (10) and (11) do not have analytical solutions, the values of systematic error 
and standard deviation can be numerically calculated in all cases. 

 

 
 

Fig. 5. The quantization error eq of the expected value of the series of measurements as a function of the real 
value T of the measured time-interval for noise distribution ψ(t)=R(0,a). 

 
 

 
 

Fig. 6. The quantization error eq of the mean value of the series of measurements as a function of the real 
value T of the measured time-interval for noise distribution ψ(t)=N(0,σ2

n,). 
 

5. Analysis and results 
 
Basing on (10) and (11), the influence of noise on the uncertainty of measurements can be 

investigated. Fig. 5 – Fig. 8 present numerical results of modelling of noise influence on the 
quantization error and standard deviation of series of measurement, obtained from numerical 
estimation.  

To analyze the behaviour of the quantization error in systems with synchronous 
measurements, one shall analyze maximum and minimum values of the error for various T. If 
the rectangular distributed noise (ψ(t)=R(0,a)) is used, a relation of the quantization error is 
presented in Fig. 9. One can notice that for a=nq, where n is a natural number, min(eq) = max 
(eq) = 0. For n=1 the situation corresponds to the asynchronous measurement (Fig. 3). 
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Fig. 7. Standard deviation σT  of a series of measurements as a function of the real value of the measured time 
interval T for noise distribution ψ(t)=R(0,a). 

 
 

 
 

Fig. 8. Value of the quantization error σT  of a series of measurements as a function of the real value of the 
measured time interval T for noise distribution ψ(t)=N(0,σ2

n,). 
 
If the quantization error is zero, the uncertainty of measurement depends only on the 

standard deviation of measurement results. This situation is presented in Fig. 7. The standard 
deviation σT  for a=q, a=2q, a=3q, as a  function of T is presented in Fig. 10. One can 
observe the well known semi-circular characteristics for a=q, which was discussed in [9-11]. 

The RMS values of σT are equal respectively to : 0,4082q= ,
6

1
q  for a=q (which conforms 

with Eq. (3)), 0,6493q for a=2q, and 0,9165q for a=3q. 
The quantization error, where noise is given by normal distribution N(0,σ2

n,), is presented 
in Fig. 6. The minimum and maximum values of the error are presented in Fig. 11. One can 
notice that for σn>0,7q the quantization error eq does not depend on T, and its value is 
negligible (less than 5·10-5·q). In such a case, the uncertainty of measurement depends only 
on the variance of the measurement series. 
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Fig 9. Minimum and maximum values of 
quantization error as  a function of width of rectangular 

distribution of noise. 
 

 
 

Fig 10. Characteristics of standard deviation of a 
measurement series for different widths of rectangular 

distribution. 

In Fig. 12 the minimum and maximum values of standard deviation σT of a measurement 
series as a function of standard deviation of normal distribution σn are presented. If σn>0,7q, 
σT  is independent of T and the uncertainty of measurement can be estimated as a standard 
error of the mean: 
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Fig. 11 The maximum and minimum values of the 
quantization error, for noise distribution 

ψ(t)=N(0,σ2
n,) as a function of σn. 

 

 
 

Fig 12. The maximum and minimum values of the 
standard deviation ,σT, for noise distribution 

ψ(t)=N(0,σ2
n,) as a function of σn. 

 
 
6. Summary 

 
The aim of this article was to discuss the averaging of the results of time interval 

measurements. The mathematical model of averaging for both synchronous and asynchronous 
measurements is presented. The results of simulations for asynchronous measurements 
correspond to theoretical approaches presented in [9-12], but are significantly more general. 
In case of synchronous measurements, the model allows to research the influence of different 
types of noise on results of averaging.  
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The most interesting case discussed in this paper is synchronous time-interval 
measurement in the presence of noise with a normal distribution N(0,σ2

n,). When the standard 
deviation σn is greater than 0,7q, the quantization error is insignificant, and the measurement 
uncertainty depends only on the dispersion of the measurement series. The presented results 
of studies can be applied in error analysis of synchronous measurement systems. 
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